Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genesis ; 61(6): e23569, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37937350
3.
BMC Ecol Evol ; 23(1): 63, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891482

RESUMO

The transition from notochord to vertebral column is a crucial milestone in chordate evolution and in prenatal development of all vertebrates. As ossification of the vertebral bodies proceeds, involutions of residual notochord cells into the intervertebral discs form the nuclei pulposi, shock-absorbing structures that confer flexibility to the spine. Numerous studies have outlined the developmental and evolutionary relationship between notochord and nuclei pulposi. However, the knowledge of the similarities and differences in the genetic repertoires of these two structures remains limited, also because comparative studies of notochord and nuclei pulposi across chordates are complicated by the gene/genome duplication events that led to extant vertebrates. Here we show the results of a pilot study aimed at bridging the information on these two structures. We have followed in different vertebrates the evolutionary trajectory of notochord genes identified in the invertebrate chordate Ciona, and we have evaluated the extent of conservation of their expression in notochord cells. Our results have uncovered evolutionarily conserved markers of both notochord development and aging/degeneration of the nuclei pulposi.


Assuntos
Cordados , Núcleo Pulposo , Animais , Notocorda/metabolismo , Projetos Piloto , Expressão Gênica
4.
BMC Biol ; 20(1): 116, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35581640

RESUMO

BACKGROUND: Transposable elements (TEs) widely contribute to the evolution of genomes allowing genomic innovations, generating germinal and somatic heterogeneity, and giving birth to long non-coding RNAs (lncRNAs). These features have been associated to the evolution, functioning, and complexity of the nervous system at such a level that somatic retrotransposition of long interspersed element (LINE) L1 has been proposed to be associated to human cognition. Among invertebrates, octopuses are fascinating animals whose nervous system reaches a high level of complexity achieving sophisticated cognitive abilities. The sequencing of the genome of the Octopus bimaculoides revealed a striking expansion of TEs which were proposed to have contributed to the evolution of its complex nervous system. We recently found a similar expansion also in the genome of Octopus vulgaris. However, a specific search for the existence and the transcription of full-length transpositionally competent TEs has not been performed in this genus. RESULTS: Here, we report the identification of LINE elements competent for retrotransposition in Octopus vulgaris and Octopus bimaculoides and show evidence suggesting that they might be transcribed and determine germline and somatic polymorphisms especially in the brain. Transcription and translation measured for one of these elements resulted in specific signals in neurons belonging to areas associated with behavioral plasticity. We also report the transcription of thousands of lncRNAs and the pervasive inclusion of TE fragments in the transcriptomes of both Octopus species, further testifying the crucial activity of TEs in the evolution of the octopus genomes. CONCLUSIONS: The neural transcriptome of the octopus shows the transcription of thousands of putative lncRNAs and of a full-length LINE element belonging to the RTE class. We speculate that a convergent evolutionary process involving retrotransposons activity in the brain has been important for the evolution of sophisticated cognitive abilities in this genus.


Assuntos
Octopodiformes , RNA Longo não Codificante , Animais , Encéfalo , Elementos de DNA Transponíveis , Feminino , Genoma , Octopodiformes/genética , Gravidez , RNA Longo não Codificante/genética , Retroelementos/genética
5.
Front Cell Dev Biol ; 9: 701779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552923

RESUMO

During evolution, new characters are designed by modifying pre-existing structures already present in ancient organisms. In this perspective, the Central Nervous System (CNS) of ascidian larva offers a good opportunity to analyze a complex phenomenon with a simplified approach. As sister group of vertebrates, ascidian tadpole larva exhibits a dorsal CNS, made up of only about 330 cells distributed into the anterior sensory brain vesicle (BV), connected to the motor ganglion (MG) and a caudal nerve cord (CNC) in the tail. Low number of cells does not mean, however, low complexity. The larval brain contains 177 neurons, for which a documented synaptic connectome is now available, and two pigmented organs, the otolith and the ocellus, controlling larval swimming behavior. The otolith is involved in gravity perception and the ocellus in light perception. Here, we specifically review the studies focused on the development of the building blocks of ascidians pigmented sensory organs, namely pigment cells and photoreceptor cells. We focus on what it is known, up to now, on the molecular bases of specification and differentiation of both lineages, on the function of these organs after larval hatching during pre-settlement period, and on the most cutting-edge technologies, like single cell RNAseq and genome editing CRISPR/CAS9, that, adapted and applied to Ciona embryos, are increasingly enhancing the tractability of Ciona for developmental studies, including pigmented organs formation.

6.
Evol Dev ; 23(2): 72-85, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33355999

RESUMO

Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) of Molgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory gene Ebf (Collier/Olf/EBF) was reduced in the developing MG of M. occulta when compared with molgulid species with swimming larvae. This was corroborated by measuring allele-specific expression of Ebf in hybrid embryos from crosses of M. occulta with the swimming species M. oculata. Heterologous reporter construct assays in the model tunicate species Ciona robusta revealed a specific cis-regulatory sequence change that reduces expression of Ebf in the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified in M. occulta larvae, but their differentiation might be impaired due to reduction of Ebf expression levels.


Assuntos
Urocordados , Animais , Evolução Biológica , Larva/genética , Neurônios Motores , Notocorda , Urocordados/genética
7.
Front Cell Dev Biol ; 8: 569601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33043001

RESUMO

The tunicate Ciona robusta is an emerging model system to study the evolution of the nervous system. Due to their small embryos and compact genomes, tunicates, like Ciona robusta, have great potential to comprehend genetic circuitry underlying cell specific gene repertoire, among different neuronal cells. Their simple larvae possess a sensory vesicle comprising two pigmented sensory organs, the ocellus and the otolith. We focused here on Klhl21/30, a gene belonging to Kelch family, that, in Ciona robusta, starts to be expressed in pigmented cell precursors, becoming specifically maintained in the otolith precursor during embryogenesis. Evolutionary analyses demonstrated the conservation of Klhl21/30 in all the chordates. Cis-regulatory analyses and CRISPR/Cas9 mutagenesis of potential upstream factors, revealed that Klhl21/30 expression is controlled by the combined action of three transcription factors, Mitf, Dmrt, and Msx, which are downstream of FGF signaling. The central role of Mitf is consistent with its function as a fundamental regulator of vertebrate pigment cell development. Moreover, our results unraveled a new function for Dmrt and Msx as transcriptional co-activators in the context of the Ciona otolith.

8.
Genes (Basel) ; 11(9)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867148

RESUMO

Establishment of presynaptic mechanisms by proteins that regulate neurotransmitter release in the presynaptic active zone is considered a fundamental step in animal evolution. Rab3 interacting molecule-binding proteins (Rimbps) are crucial components of the presynaptic active zone and key players in calcium homeostasis. Although Rimbp involvement in these dynamics has been described in distantly related models such as fly and human, the role of this family in most invertebrates remains obscure. To fill this gap, we defined the evolutionary history of Rimbp family in animals, from sponges to mammals. We report, for the first time, the expression of the two isoforms of the unique Rimbp family member in Ciona robusta in distinct domains of the larval nervous system. We identify intronic enhancers that are able to drive expression in different nervous system territories partially corresponding to Rimbp endogenous expression. The analysis of gene expression patterns and the identification of regulatory elements of Rimbp will positively impact our understanding of this family of genes in the context of Ciona embryogenesis.


Assuntos
Biomarcadores/análise , Ciona intestinalis/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema Nervoso/metabolismo , Sequências Reguladoras de Ácido Nucleico , Animais , Ciona intestinalis/embriologia , Ciona intestinalis/genética , Evolução Molecular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema Nervoso/embriologia , Filogenia
9.
Dev Genes Evol ; 230(5-6): 329-338, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839880

RESUMO

Nitric oxide synthase is ubiquitously present in metazoans and is involved in a wide range of biological processes. Three distinct Nos genes have been so far identified in vertebrates exhibiting a complex expression pattern and transcriptional regulation. Nevertheless, although independent events of Nos duplication have been observed in several taxa, only few studies described the regulatory mechanisms responsible for their activation in non-vertebrate animals. To shed light on the mechanisms underlying neuronal-type Nos expression, we focused on two non-vertebrate chordates: the cephalochordate Branchiostoma lanceolatum and the tunicate Ciona robusta. Here, throughout transphyletic and transgenic approaches, we identified genomic regions in both species acting as Nos functional enhancers during development. In vivo analyses of Nos genomic fragments revealed their ability to recapitulate the endogenous expression territories. Therefore, our results suggest the existence of evolutionary conserved mechanisms responsible for neuronal-type Nos regulation in non-vertebrate chordates. In conclusion, this study paves the way for future characterization of conserved transcriptional logic underlying the expression of neuronal-type Nos genes in chordates.


Assuntos
Ciona intestinalis/genética , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/genética , Neurônios/metabolismo , Óxido Nítrico Sintase/genética , Animais , Animais Geneticamente Modificados , Evolução Biológica , Ciona intestinalis/embriologia , Ciona intestinalis/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Genoma , Anfioxos/embriologia , Anfioxos/crescimento & desenvolvimento , Larva/genética , Óxido Nítrico Sintase/metabolismo , Filogenia , Sequências Reguladoras de Ácido Nucleico
10.
Zoological Lett ; 6: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32537244

RESUMO

Fluorescence and luminescence are widespread optical phenomena exhibited by organisms living in terrestrial and aquatic environments. While many underlying mechanistic features have been identified and characterized at the molecular and cellular levels, much less is known about the ecology and evolution of these forms of bioluminescence. In this review, we summarize recent findings in the evolutionary history and ecological functions of fluorescent proteins (FP) and pigments. Evidence for green fluorescent protein (GFP) orthologs in cephalochordates and non-GFP fluorescent proteins in vertebrates suggests unexplored evolutionary scenarios that favor multiple independent origins of fluorescence across metazoan lineages. Several context-dependent behavioral and physiological roles have been attributed to fluorescent proteins, ranging from communication and predation to UV protection. However, rigorous functional and mechanistic studies are needed to shed light on the ecological functions and control mechanisms of fluorescence.

11.
Mar Environ Res ; 158: 104950, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32217300

RESUMO

Natural storms are able to determine reworking of seabed up to considerable depths and favour suspension of sediment-associated chemicals. Yet, a direct link between exposure to resuspended contaminants and the biological effects on marine organisms have to be fully established. We exposed adults of a suspension feeder, the ascidian Ciona robusta, to polluted sediment (e.g., containing mixtures of polycyclic aromatic hydrocarbons and heavy metals) from the industrial area of Bagnoli-Coroglio under two temporal patterns ('aggregated' vs. 'spaced') of turbulence events. Then, we assessed the impact of resuspended pollutants on the ascidian gut environment via four broad categories: oxidative stress, innate immunity, host-microbiota interactions, and epithelium. An early oxidative stress response was seen after a week of exposure to static sediment. Instead, water turbulence had no effect on the antioxidant defence. The first episode of turbulent suspension induced a minimal pro-inflammatory response in the 'spaced' pattern. Mucus overproduction and a complete occlusion of the crypt lumen were found following sediment reworking. This study suggests a protective response of the gut environment in marine invertebrates exposed to environmental extremes, leading to increased susceptibility to disease and to concerns on the combined effects of chronic environmental contamination and acute disturbance events possibly associated with climate change.


Assuntos
Microbioma Gastrointestinal , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Invertebrados , Metais Pesados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
12.
Gene X ; 2: 100011, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31193955

RESUMO

The paired-type homeodomain transcription factor Uncx is involved in multiple processes of embryogenesis in vertebrates. Reasoning that zebrafish genes uncx4.1 and uncx are orthologs of mouse Uncx, we studied their genomic environment and developmental expression. Evolutionary analyses indicate the zebrafish uncx genes as being paralogs deriving from teleost-specific whole-genome duplication. Whole-mount in situ mRNA hybridization of uncx transcripts in zebrafish embryos reveals novel expression domains, confirms those previously known, and suggests sub-functionalization of paralogs. Using genetic mutants and pharmacological inhibitors, we investigate the role of signaling pathways on the expression of zebrafish uncx genes in developing somites. In identifying putative functional role(s) of zebrafish uncx genes, we hypothesized that they encode transcription factors that coordinate growth and innervation of somitic muscles.

13.
Cell Mol Life Sci ; 76(20): 4117-4130, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31028425

RESUMO

Intracellular traffic amongst organelles represents a key feature for eukaryotes and is orchestrated principally by members of Rab family, the largest within Ras superfamily. Given that variations in Rab repertoire have been fundamental in animal diversification, we provided the most exhaustive survey regarding the Rab toolkit of chordates. Our findings reveal the existence of 42 metazoan conserved subfamilies exhibiting a univocal intron/exon structure preserved from cnidarians to vertebrates. Since the current view does not capture the Rab complexity, we propose a new Rab family classification in three distinct monophyletic clades. The Rab complement of chordates shows a dramatic diversification due to genome duplications and independent gene duplications and losses with sharp differences amongst cephalochordates, tunicates and gnathostome vertebrates. Strikingly, the analysis of the domain architecture of this family highlighted the existence of chimeric calcium-binding Rabs, which are animal novelties characterized by a complex evolutionary history in gnathostomes and whose role in cellular metabolism is obscure. This work provides novel insights in the knowledge of Rab family: our hypothesis is that chordates represent a hotspot of Rab variability, with many events of gene gains and losses impacting intracellular traffic capabilities. Our results help to elucidate the role of Rab members in the transport amongst endomembranes and shed light on intracellular traffic routes in vertebrates. Then, since the predominant role of Rabs in the molecular communication between different cellular districts, this study paves to way to comprehend inherited or acquired human disorders provoked by dysfunctions in Rab genes.


Assuntos
Evolução Biológica , Cordados/genética , Genoma , Família Multigênica , Filogenia , Proteínas rab de Ligação ao GTP/genética , Animais , Transporte Biológico , Cordados/classificação , Bases de Dados Genéticas , Éxons , Duplicação Gênica , Variação Genética , Humanos , Íntrons , Organelas/genética , Organelas/metabolismo , Domínios Proteicos , Sintenia , Proteínas rab de Ligação ao GTP/classificação , Proteínas rab de Ligação ao GTP/metabolismo
15.
Dev Biol ; 448(2): 111-118, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30471267

RESUMO

Through a myriad of pigments stored in different cells, animal pigmentation represents a crucial process to face disparate environmental and ecological challenges. In vertebrates, the small GTPase Rab32 and Rab38 have a conserved role in the transport of key melanogenic enzymes, as tyrosinase (tyr) and tyrosinase-related protein (tyrp), to the melanosomes in formation. We provide a survey on Rab32/38 evolution and its regulatory logics during pigment cell formation in Ciona robusta. Our phylogeny supports the existence of a single Rab32/38 gene in tunicates, which is probably the unique transporter for tyrosinase family members in this clade. Different deletions allow us to identify the minimal cis-regulatory element able to recapitulate the endogenous gene expression during pigment cell development in C. robusta. In this conserved region, we identified two putative binding sites for the transcription factor Mitf, which is known for its role as regulator of pigmentation in vertebrates. Mutational analysis revealed that both Mitf binding sites are essential for the activity of this regulatory region and we demonstrated that Mitf misexpression is able to induce ectopic activation of the Rab32/38 regulatory region in vivo. Our results strongly indicate that Mitf is involved in the regulation of Rab32/38 activity during Ciona pigment cell development.


Assuntos
Biomarcadores/metabolismo , Ciona intestinalis/citologia , Ciona intestinalis/genética , Regulação da Expressão Gênica , Pigmentação/genética , Transcrição Gênica , Proteínas rab de Ligação ao GTP/genética , Animais , Sequência de Bases , Sítios de Ligação , Evolução Molecular , Fator de Transcrição Associado à Microftalmia/metabolismo , Notocorda/metabolismo , Filogenia , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas rab de Ligação ao GTP/metabolismo
16.
Gene ; 721S: 100011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34530988

RESUMO

The paired-type homeodomain transcription factor Uncx is involved in multiple processes of embryogenesis in vertebrates. Reasoning that zebrafish genes uncx4.1 and uncx are orthologs of mouse Uncx, we studied their genomic environment and developmental expression. Evolutionary analyses indicate the zebrafish uncx genes as being paralogs deriving from teleost-specific whole-genome duplication. Whole-mount in situ mRNA hybridization of uncx transcripts in zebrafish embryos reveals novel expression domains, confirms those previously known, and suggests sub-functionalization of paralogs. Using genetic mutants and pharmacological inhibitors, we investigate the role of signaling pathways on the expression of zebrafish uncx genes in developing somites. In identifying putative functional role(s) of zebrafish uncx genes, we hypothesized that they encode transcription factors that coordinate growth and innervation of somitic muscles.

17.
PLoS One ; 13(10): e0196930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30300344

RESUMO

Ran (ras-related nuclear protein) is a small GTPase belonging to the RAS superfamily that is specialized in nuclear trafficking. Through different accessory proteins, Ran plays key roles in several processes including nuclear import-export, mitotic progression and spindle assembly. Consequently, Ran dysfunction has been linked to several human pathologies. This work illustrates the high degree of amino acid conservation of Ran orthologues across evolution, reflected in its conserved role in nuclear trafficking. Moreover, we studied the evolutionary scenario of the pre-metazoan genetic linkage between Ran and Stx, and we hypothesized that chromosomal proximity of these two genes across metazoans could be related to a regulatory logic or a functional linkage. We studied, for the first time, Ran expression during amphioxus development and reported its presence in the neural vesicle, mouth, gill slits and gut corresponding to body regions involved in active cell division.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/genética , Mitose , Proteína ran de Ligação ao GTP/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Humanos , Anfioxos/citologia , Anfioxos/embriologia , Filogenia , Proteínas Qa-SNARE/genética , Alinhamento de Sequência , Proteína ran de Ligação ao GTP/análise
18.
J Comp Neurol ; 526(6): 1057-1072, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29322524

RESUMO

Neurotrophins (NTF) are a family of secreted nerve growth factors with affinity for tyrosine kinase (Ntrk) and p75 receptors. To fully understand the variety of developmental roles played by NTFs, it is critical to know when and where genes encoding individual ligands and receptors are transcribed. Identification of ntf and ntrk transcripts in zebrafish development remains to be fully characterized for further uncovering the potential function(s) of the NTF signal transduction pathway. Here, we conducted a systematic analysis of the expression profiles of four ntf and five ntrk genes during zebrafish development using whole-mount in situ hybridization. Our study unveils new expression domains in the developing embryo, confirms those previously known, and shows that ntf and ntrk genes have different degrees of cell- and tissue-type specificity. The unique and overlapping expression patterns here depicted indicate the coordination of the redundant and divergent functions of NTFs and represent valuable tools for deciphering the molecular pathways involved in the specification and function of embryonic cell types.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Crescimento Neural/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Embrião não Mamífero , Humanos , Fatores de Crescimento Neural/genética , Filogenia , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores de Fator de Crescimento Neural/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
19.
Nat Commun ; 8(1): 1799, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180615

RESUMO

Epithelial-mesenchymal interactions are crucial for the development of numerous animal structures. Thus, unraveling how molecular tools are recruited in different lineages to control interplays between these tissues is key to understanding morphogenetic evolution. Here, we study Esrp genes, which regulate extensive splicing programs and are essential for mammalian organogenesis. We find that Esrp homologs have been independently recruited for the development of multiple structures across deuterostomes. Although Esrp is involved in a wide variety of ontogenetic processes, our results suggest ancient roles in non-neural ectoderm and regulating specific mesenchymal-to-epithelial transitions in deuterostome ancestors. However, consistent with the extensive rewiring of Esrp-dependent splicing programs between phyla, most developmental defects observed in vertebrate mutants are related to other types of morphogenetic processes. This is likely connected to the origin of an event in Fgfr, which was recruited as an Esrp target in stem chordates and subsequently co-opted into the development of many novel traits in vertebrates.


Assuntos
Desenvolvimento Embrionário/genética , Transição Epitelial-Mesenquimal/fisiologia , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Evolução Biológica , Sistemas CRISPR-Cas , Éxons/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Silenciamento de Genes , Anfioxos , Masculino , Mutação , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Strongylocentrotus purpuratus , Urocordados , Peixe-Zebra
20.
Evodevo ; 8: 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28729899

RESUMO

BACKGROUND: Analyzing close species with diverse developmental modes is instrumental for investigating the evolutionary significance of physiological, anatomical and behavioral features at a molecular level. Many examples of trait loss are known in metazoan populations living in dark environments. Tunicates are the closest living relatives of vertebrates and typically present a lifecycle with distinct motile larval and sessile adult stages. The nervous system of the motile larva contains melanized cells associated with geotactic and light-sensing organs. It has been suggested that these are homologous to vertebrate neural crest-derived melanocytes. Probably due to ecological adaptation to distinct habitats, several species of tunicates in the Molgulidae family have tailless (anural) larvae that fail to develop sensory organ-associated melanocytes. Here we studied the evolution of Tyrosinase family genes, indispensible for melanogenesis, in the anural, unpigmented Molgula occulta and in the tailed, pigmented Molgula oculata by using phylogenetic, developmental and molecular approaches. RESULTS: We performed an evolutionary reconstruction of the tunicate Tyrosinase gene family: in particular, we found that M. oculata possesses genes predicted to encode one Tyrosinase (Tyr) and three Tyrosinase-related proteins (Tyrps) while M. occulta has only Tyr and Tyrp.a pseudogenes that are not likely to encode functional proteins. Analysis of Tyr sequences from various M. occulta individuals indicates that different alleles independently acquired frameshifting short indels and/or larger mobile genetic element insertions, resulting in pseudogenization of the Tyr locus. In M. oculata, Tyr is expressed in presumptive pigment cell precursors as in the model tunicate Ciona robusta. Furthermore, a M. oculata Tyr reporter gene construct was active in the pigment cell precursors of C. robusta embryos, hinting at conservation of the regulatory network underlying Tyr expression in tunicates. In contrast, we did not observe any expression of the Tyr pseudogene in M. occulta embryos. Similarly, M. occulta Tyr allele expression was not rescued in pigmented interspecific M. occulta × M. oculata hybrid embryos, suggesting deleterious mutations also to its cis-regulatory sequences. However, in situ hybridization for transcripts from the M. occulta Tyrp.a pseudogene revealed its expression in vestigial pigment cell precursors in this species. CONCLUSIONS: We reveal a complex evolutionary history of the melanogenesis pathway in tunicates, characterized by distinct gene duplication and loss events. Our expression and molecular data support a tight correlation between pseudogenization of Tyrosinase family members and the absence of pigmentation in the immotile larvae of M. occulta. These results suggest that relaxation of purifying selection has resulted in the loss of sensory organ-associated melanocytes and core genes in the melanogenesis biosynthetic pathway in M. occulta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...